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The present work deals with the determination of the newly discovered conditions
necessary for model updating with the eigensensitivity approach. The treatment concerns
the maximum number of identi"able parameters regarding the structure of the eigenvectors
derivatives. A mathematical demonstration is based on the evaluation of the rank of the
least-squares matrix and produces the algebraic limiting conditions. Numerical application
to a lumped parameter structure is employed to validate the mathematical limits taking into
account di!erent subsets of mode shapes. The demonstration is extended to the calculation
of the eigenvector derivatives with both the Fox and Kapoor, and Nelson methods. III
conditioning of the least-squares sensitivity matrix is revealed through the covariance jump.
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1. INTRODUCTION

The increasing demand of realistic numerical discrete models requires accurate
test-correlation procedures. In the "eld of vibrations several methods have been developed
which allow "nite element model updating by means of data from experimental modal
analysis.

The present work treats the case of convergence on modal data based on the sensitivity
approach. The concept of iteratively updating a structural model by using eigenvalue and
eigenvector sensitivity was "rst proposed by Collins et al. [1]; this approach was followed
and evolved in many other papers, dealing either with numerically simulated or with
experimental data.

In the case of relatively complex structures, the error in the model can be di$cult to
locate. Some researchers simulate the dynamic behaviour of the total system by combining
structural sub-elements identi"ed previously through independent experiments. The
inaccuracies of the model are thus attributed to the interface parameters [2}4].

An examination of the literature regarding the modal sensitivity approach shows
a de"ciency in the preliminary evaluation of the maximum number of parameters that can
be identi"ed. This was recently pointed out and discussed in some detail by the present
authors [5, 6] also taking into account the appropriate error estimates including the e!ect
of noisy data [7].

In some works [2, 8] a simultaneous convergence on eigenvalues and eigenvectors is
proposed and the ill-conditioning e!ect of the sensitivity matrix is attributed to the
di!erence in magnitude between eigenvalues and eigenvector gradients. This problem is
overcome in reference [9] by balancing the sensitivity matrix; however, the limit to the
maximum number of identi"able parameters is simply taken to be equal to the number of
independent experimental measurements.
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Apart from these approaches, the literature shows that the evaluation of the maximum
number of parameters that can be identi"ed is left to trial and error. The goal of the present
work is a more systematic treatment.

The method is based on the minimization of a quadratic measure of deviation between
the calculated and experimental modal data. A general study through a least-squares
solution leads to the result that the maximum number of identi"able parameters is given
a theoretical limit according to the rank of sensitivity matrix which is formed by
eigenvectors derivatives.

Fox and Kapoor [10] achieved the "rst order eigenvector derivative for a real symmetric
matrix as a linear combination of the mode shapes: as this &&modal method'' can be
computationally expensive for large problems, in practice, truncation is required and the
method becomes an approximate one. A viable alternative is the method proposed by
Nelson [11], which gives the eigenvector derivative for any mode shape directly by solving
a linear system and dealing with the complete mass and sti!ness matrices. If the Fox and
Kapoor method is extended to all the mode shapes the "rst order derivative is exact and
equivalent to the result of Nelson's method. Variations and modi"cations are to be found in
references [12}14]. All of these have been compared in reference [15], where it is concluded
that the Nelson method o!ers the best computational performance.

However, when all modes are included, the two methods give the same results. In the
present work a theoretical demonstration to evaluate the sensitivity matrix rank is
performed by using only the Fox and Kapoor method due to the simplicity of the skew
symmetric formulation.

2. THEORETICAL DEVELOPMENT

In order to update a "nite element model by means of experimental modal analysis the
objective function to be minimized could be a quadratic measure of deviation between the
calculated and the experimental modal data. Natural frequencies are more often used
although these may be combined with mode shapes. A cumulative objective function can be
written as follows:
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Due to the fact that the objective function E
w

introduces a number of M
e

independent
deviations, the theoretical number of identi"able parameters furnished by the matching of
eigenvalues is simply equal to the number of M

e
measured resonant frequencies. A more

complex task is the evaluation of the limit on the parameters to be updated by the
contribution of the eigenvectors. The present paper deals with the number of independent
equations that are produced by the comparison of modal shapes focusing attention on the
objective function E

a
.

Due to the incompleteness of the measured mode shapes the number of G
a
d.o.f.s of the

numerical model is usually much larger than that of the experimental grid G
e
. In order to

avoid the "ctitious conditioning e!ect related to the expansion methods [16, 17]
the numerical mode vector is reduced to the subset of measured G

e
d.o.f. in the

following way:

MaL N"[¹ ]MaN, (2)
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where [¹ ] is a G
e *

G
a
reduction matrix whose terms t

i,j
"1 establish the correspondence

between the jth numerical d.o.f. with the ith experimental d.o.f.. D.o.f.s missing in MaL N are
associated with terms t

i,j
"0.

Therefore, the modal shape error function is conveniently written in the following vector
form [6]:
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where the summation is limited to the number of M
e

measured mode shapes.
The minimum of the euclidean norm expressed in equation (3) may be found iteratively

through the convergence algorithm such as optimization procedures. At convergence, a run
of the least-squares algorithm will provide the covariance matrix of the estimated
parameters, and the ill-conditioning of the least-squares sensitivity matrix can be thus
revealed numerically.

3. LEAST-SQUARES SOLUTION

The condition that function E
a
be a minimum for any jth structural parameter
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which after linearization of mode shape vectors around the convergence value for each
structural parameter p
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becomes

Mp!p0N"([S]T[S])~1[S]TMbN (6)

which corresponds to a classical least-squares problem where ([S]T[S])~1[S]T"[a]` is
the generalized inverse matrix [18] where:
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Taking into account the incompleteness of the experimental data the sensitivity matrix
expressed in equation (8) has M

e *
G

e
rows; as noted also in reference [9], the maximum

number of parameters must satisfy the following relation:

N(M
e
G

e
(9)
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which is not correlated to the expression of the sensitivity coe$cient, being just a count of
available equations correlated to the experimental data.

The following will show that the number of parameters N is further limited according to
the structure of mode derivatives. At this point it is opportune to stress that the limitations
found in this paper are necessary conditions, and which means that the limit of the number
of parameters will be identi"ed. As has been investigated at length elsewhere, [5, 6, 19], the
numerical values of the derivatives in the matrix [S] establish the degree of dependence of
mode variations on parameter variations, and therefore the covariance of the estimated
parameters.

The investigation in the present work concerns the algebraic structure of this array of
derivatives and not their numerical values.

4. EIGENDERIVATIVES SKEW SYMMETRIC PROPERTIES

According to the modal method [10], the eigenvector derivatives of the mth mode shape
can be written as follows:
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According to Fox and Kapoor [10] the derivative is exact if, as indicated in equation (10),
the summation is performed over the complete set of the G

a
calculated mode shapes. For the

purpose of this work it is crucial to underline the skew-matrix structure of the
dn
m,j

coe$cients. While this feature was useful [4] in reducing the computational e!ort when
the modal method is implemented, its importance is stressed here in view of the evaluation
rank of the sensitivity matrix.

Taking into account the incompleteness of the experimental data equation (10) becomes
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m
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where matrix [aL ] has G
a

columns and G
e

rows and MdNn
m

is an expedient to order the
coe$cients dn

m,j
in a column vector of length G

a
.

5. RANK EVALUATION OF THE SENSITIVITY MATRIX

Taking into account equation (12) the sensitivity matrix of equation (8) becomes
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In order to evaluate the limiting e!ect due to the incompleteness of the experimental data
and the skew symmetric properties of the derivative of the eigenvectors, let the matrices [C]
and [D] denote the sub-matrices in which the sensitivity matrix can be decomposed as
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Through a well-known matrix theorem [20], the rank of a product matrix is equal to the
minimum rank of the sub-matrices:

rank [S]"min(rank [C], rank [D]). (15)

Matrix [C] is de"ned as a banded matrix, by repeating the reduced mode shape sub-matrix
[aL ] on the diagonal. From equation (14) it follows that the number of diagonal elements is
M

e
; hence, the total number of rows is M

e
G

e
and the total number of columns is M

e
G

a
. All

the non-square matrices on the diagonal are formed by linear independent eigenvectors;
their rank is:
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since it has already been assumed that G
e
@G

a
.

Therefore, the rank of matrix [C] equals M
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times the rank of [aL ].
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The experimental G
e

d.o.f. must be chosen so as to be su$cient to display the measured
mode shapes univocally; thus M

e
*G

e
will not include a dependent variable.

Matrix [D] contains column vectors MdNn
m

ordered in rows according to the structural
parameter, and in columns according to the experimental mode shape. Matrix [D] consists
of M

e
G

a
rows and N columns and the rank is the minimum number between the total

number of parameters N and the number of independent rows.
Linear independence of rows is strictly linked to the skewness as pointed out in equation

(11). First, each column vector MdNn
m

has an element equal to zero when j"m; moreover,
each column vector MdNn

m
contains pairs of elements equal in value but opposite in sign:
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Both the zeros and the pairs are positioned in all columns of [D] in a single row, because
this position does not depend on the structural parameter N; therefore the number of rows
containing zeros in the matrix [D] is equal to M

e
, and the number of linearly dependent

rows due to the equal pairs is (M
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The rank of the matrix [D] is calculated as
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Finally, taking into account equation (15) and substituting equations (17) and (20) in it, the
rank of the sensitivity matrix [S] is given by
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6. NECESSARY CONDITIONS

The limit to the number of identi"able parameters is then obtained from equation (21) as
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The inequality can be applied to the case when the eigenvector derivatives are calculated by
equation (10) with all G

a
modes or with the equivalent Nelson method.

As in the case of &&modal method'' the derivatives are normally calculated with a truncated
set of eigenvectors. In order to extend to this case the validity of the necessary conditions, it
is possible to decompose he sensitivity matrix in a two-factor product and evaluate the rank
of each factor's submatrices.

The summation of equation (10) is limited to a subset of M
a
modes:
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Therefore, including the truncation limiting on the calculated eigenvectors derivatives, the
rank of matrix [aL ]Ma is

rank[aL ]Ma"min(G
e
, M

a
). (24)

The number of numerical mode shapes M
a
used to calculate the eigenvector derivatives may

be equal or slightly greater than M
e
.

The subset G
e
d.o.f. is the best choice in order to show not only the M

e
experimental mode

shapes but also the M
a

numerical modes. The proper selection of G
e

prevents M
a

eigenvectors from becoming linearly dependent by coincidence, due to incompleteness (see
equation (2)).

From this it follows:
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Repeating the same limiting condition for the linear independence of the rows, of the matrix
[D] and as M

e
M

a
is now the total number of rows, then it follows that the linearly
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independent rows are
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So the rank of matrix [D] is calculated through the relation
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The more restrictive formula that gives the rank of the sensitivity matrix for the
approximate eigenvector derivative is
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which, observing that the fourth relation is always lower than the second, "nally gives the
limit to the identi"able parameters:
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The inequality can be used either in the a priori planning of the number of measurements to
be taken or for an a posteriori determination of the maximum number of parameters that
can be identi"ed.

7. EXAMPLE CASE

In order to validate the previous theoretical demonstrations, a simple mass}spring
example is proposed. Table 1 shows the mass and the sti!ness values. A schematic
representation of this test structure is presented in Figure 1.
TABLE 1

Mass and spring values of the example structure

Mass (kg) Spring (N/m)

m
1

5]10~3 k
11

10
m

2
10]10~3 k

22
15

m
3

3]10~3 k
33

20
m

4
2]10~3 k

44
35

m
5

5]10~3 k
55

40

iOj; i#j"odd k
ij

15
iOj; i#j"even k

ij
25



Figure 1. Schematic representation of the example structure.
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If the sti!ness parameters are changed slightly, then the least-squares problem of
equation (6) is solved. The variable sti!ness parameters are those listed above. The "ctitious
&&experimental'' eigenvectors are those relative to the correct model. Due to the simplicity of
the problem, it su$ces here to iterate the least-squares algorithm.

The model updating procedure is stable and converges for di!erent starting percentage
errors of the unknown parameter versus the reference sti!ness. The identi"cation procedure
diverges only when the number of parameters to be identi"ed does not satisfy the condition
given by equations (22) and (29).

The transition point between the convergence and divergence is related to the
ill-condition of the least-squares solution. This condition is expressed in terms of the
covariance matrix [19]; the unscaled covariance matrix is

[C]"([S]T[S])~1 (30)

and the global measure of its value is de"ned as follows:

cov"tr[C]/N"

N
+
i/1

C
ij
/N (31)

Using this formula three di!erent cases of convergence can be compared increasing
the number of parameters to be identi"ed and varying the number of experimental
modes:

(1) eigenvector derivatives calculated through the modal method with a complete set of
modal shapes, equation (10);

(2) eigenvector derivatives calculated through the algebraic Nelson method;
(3) eigenvector derivatives calculated through the modal method with a truncated set of

modal shapes, equation (12).



Figure 2. Number of maximum identi"able parameters by using exact Fox and Kapoor eigenvector derivatives.

TABLE 2

Number of maximum identi,able parameters, N, versus the number M
e
of experimental modes

for the three cases examined

Case (1), (2) Case (3)

N(
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M
e

N N
1 4 3
2 7 5
3 9 6
4 10 6
5 10 *
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Cases (1) and (2) are governed by equation (22); case (3) is governed by equation (29). The
maximum number of d.o.f.s is M

emax
"G

a
"M

amax
"5. Table 2 shows the values of the

transition value of N according to the number of experimental modes M
e
.

Figure 2 shows the logarithm of the covariance trace scaled to the number of parameters
(31) for the case (1). The transition point corresponds exactly to the theoretical limit
predicted in Table 2.



Figure 3. Number of maximum identi"able parameters by using exact Nelson eigenvector derivatives.
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Figure 3 shows the same function in the case of Nelson's eigenvector derivatives. The
transition point occurs at the same value of the previous case.

Obviously cases (1) and (2) present the same limit because the eigenvector derivatives are
exact both in the complete modal method or in Nelson's algebraic approach. In the present
work both the methods are taken into account to underline that the only di!erence is
a numerical one. The di!erence in the entity of the transition jump is due to the di!erent
method in the calculation of the eigenvector derivatives. The importance of the
demonstration is not the numerical sensitivity of the method but the evidence of a transition
jump. The goal of the work is to evaluate the necessary condition for the model updating in
the modal scheme.

The upper limit of the cases (1) and (2) is given, in this lumped parameters example, by
equation (31).

In the real case of a large structure the modes are extracted through numerical methods
via subspace iteration, and usually M

a
@G

a
. If the modal method is employed, the

eigenvector derivatives are truncated by using the extracted subset of analytical modes. The
theoretical limit to the number of identi"able parameters is given in this case by equation
(29). An example is obtained by using only four analytical modes of the lumped structure as
reported in column (3) of Table 2.

Figure 4 shows the weighted covariance trace versus the number of parameters to be
identi"ed in the case of the approximate eigenvector derivative calculated with the
truncated modal method. The transition points occur at the same values predicted in
Table 2, thus proving the validity of equation (29).



Figure 4. Number of maximum identi"able parameter by using truncated Fox and Kapoor eigenvector
derivatives.
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8. CONCLUSIONS

(1) The method provides a limit on the parameters to be identi"ed, which is useful,
although must be recognized that this is the maximum.

(2) It was shown theoretically that the number of identi"able sti!ness parameters of
a structure has an upper limit that depends on the structure of the calculation of the
eigenvector derivatives. Two possibilities have been examined, i.e., the &&modal''
method of Fox and Kapoor and the &&algebraic'' method of Nelson. A number of
numerical examples regarding a simulated structure give results which are in accord
with the above theoretical predictions.

(3) With the &&modal'' method, usually only a part of the total eigenvectors of the
structure is calculated, and therefore the sensitivity formula is truncated. It was shown
that in this case the matrix of least-squares convergence of numerical data to
experimental data has a rank lower than the number of independent measurements,
accordingly limiting the number of theoretically identi"able parameters.

(4) This "nding gives a better foundation to the number of eigenvectors to be considered
in the truncated Fox and Kapoor formula, as compared to the usual empirical
recommendation of bringing the double number of experimental modes into play.
This also allows a basic planning of the experiment, i.e., the choice of the number of
experimental mode shapes and the number of experimental d.o.f. where
measurements are taken.

(5) In the case of real large structure the present method gives a basic number of
necessary conditions that must be proved to be su$cient for the updating. The
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selection of modal data and experimental grid proposed in the present paper has to be
improved mainly due to the incompleteness and the noise of the experimental
data.
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APPENDIX A: NOMENCLATURE

[a] numerical mode shape matrix
MaN

m
mth numerical mode shape

MbN least-squares column vector
dn
m,j

eigenvector derivative coe$cient
MeN

m
mth experimental mode shape

E
a

mode shapes objective function
E
w

frequencies objective function
g degree of freedom index (d.o.f.)
G

a
number of numerical d.o.f.

G
e

number of measured d.o.f.
[K] sti!ness matrix
m mode index
[M] mass matrix
M

a
subset of chosen numerical eigenvectors

M
e

total number of experimental mode shapes
n structural parameter index
N total number of structural parameters
p
n

nth structural parameter
[S] least-squares coe$cient matrix
u

m
mth numerical resonant frequency

X
m

mth experimental resonant frequency
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